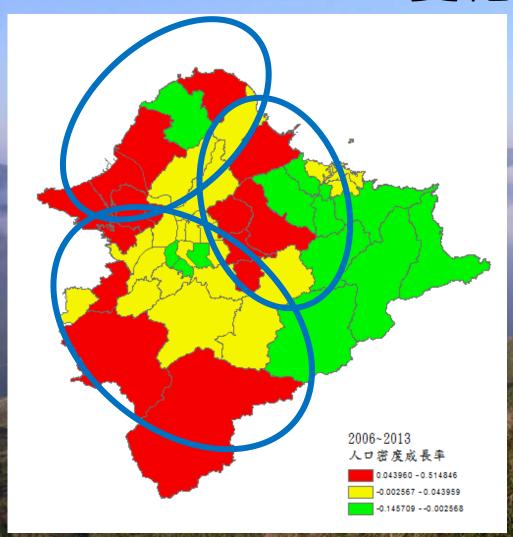
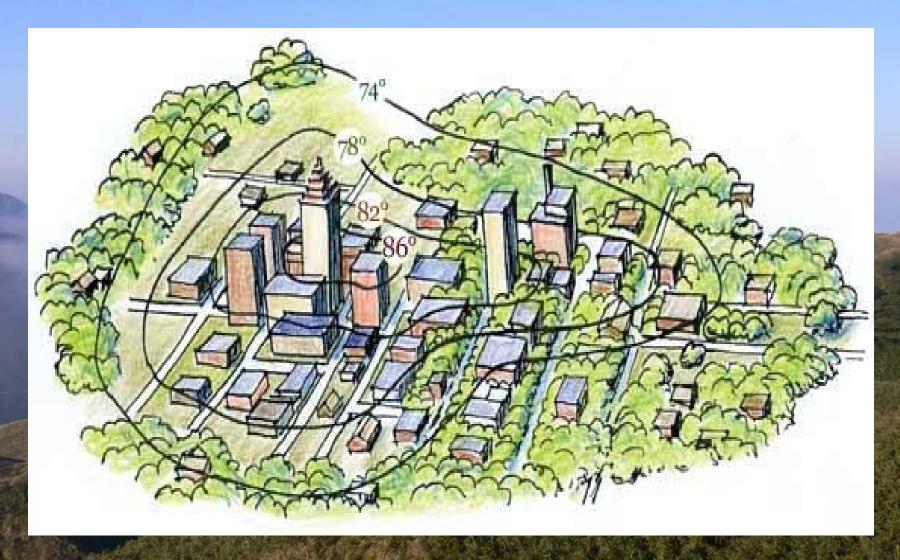


臺北地區土地開發與氣候變遷 之關聯性


麗士鈞¹、葉大綱¹、洪景山²、馮欽賜² 國立臺北大學不動產與城鄉環境學系¹ 中央氣象局氣象資訊中心²

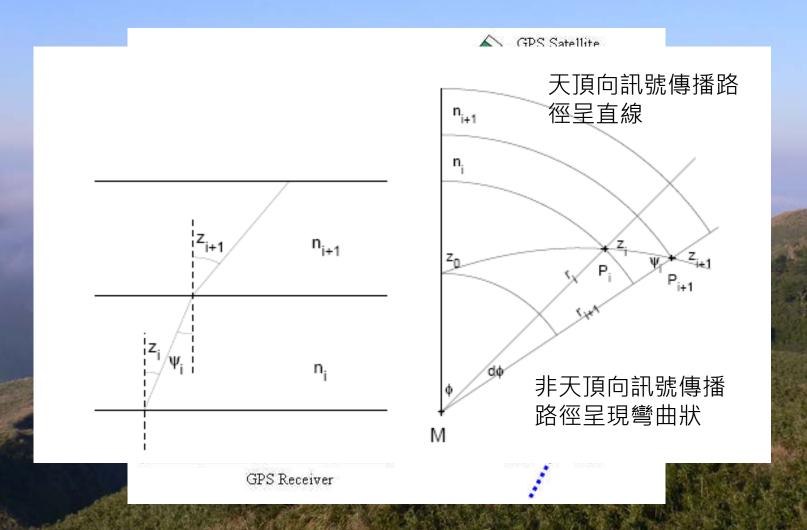
臺北地區2006、2013年人口密度比 較

臺北都會區2006、2013年人口成長 參化


- 臺北都會區人口密度高成長區, 密度高成長區, 位於西北側、西南側、東北側
- 臺北都會區人口密度高成長由核心區域往邊陲區域移動

1998~2012年四都房價指數

- 房價提高
- 產業外移郊區
- 通勤圈的改變

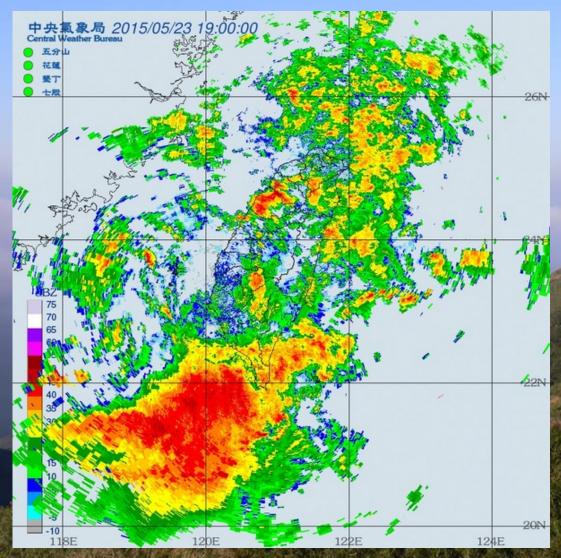

都市熱島效應

全球定位系統(GPS)

- 全球定位系統的應用
 - 即時定位、導航
 - 地殼形變、建物變形監測
 - 野外求救
 - 軍事
- GPS氣象學
 - 差分定位技術
 - 運用GPS來預測天氣、分析氣象變化

GPS訊號的傳播

差分定位


GPS在定位過程中會受到許多不同來源誤差之影響,為提升定位精度,使用兩台以上的接收儀同時觀測,將觀測方程式作線性運算

對流層 延遲誤 毙

GPS 氣象學

- 利用對流層對於GPS衛星訊號所造成的延遲效應,反演**大氣水氣含量**
- 氣象雷達只能觀測到雨量分布,但對於空間中的水氣量卻無法觀測
- 連續觀測的GPS衛星訊號可獲得高時空解析 度、近即時且連續的對流層可降水量,應 用於氣象預報

2015年5月23日19時雷達回波圖

大氣延遲

- GPS觀測資料
 - 二次差分定位,消除**衛星**與接收儀時錶誤差
 - 最小二乘法,消除週波未定值
 - 利用雙頻載波線性組合,消除電離層誤差
 - 天頂總延遲量(ZTD)以**大氣模式之估計值**代入, 以計算天頂乾延遲
 - 此時**天頂濕延遲(ZWD)**當作未知數在整體平差 中求解
- 採用長距離基線相對定位來估算絕對量之 天頂濕延遲

ZWD與PWV間之轉換

- GPS接收儀之ZWD與接收儀上空之大氣可 降水量 (PWV) 成比例關係
- ZWD乘上一比例因子口,可將此延遲量轉 化為PWV
- 比例因子Π,其經驗值約0.158-0.167之間

資料收集與處理(1/2)

- 温度測站資料
 - 驗證熱島效應是否發生於臺北地區
- 雨量測站資料
 - 一驗證熱島效應影響降雨之地域分布
- GPS衛星資料
 - 資料時間自2006年至2014年
 - 地面接收儀每30秒取得一筆GPS數據,計算之後,取得逐時資料作月平均數據分析其趨勢

資料收集與處理(2/2)

- 所有雨量站與GPS測站平均距離為3.27公里, 最遠距離為8.16公里
- 儘量使環境因素相同,降低因距離過遠環 境因素不同導致分析結果失準之可能性

温度分析

- 熱島效應會使都市地區之溫度高於周圍郊 品
- 為驗證熱島效應是否存在於臺北地區,將 臺北都會區劃分為核心區與邊陲區,核心 區內之溫度測站定義為都市測站,反之為 郊區測站

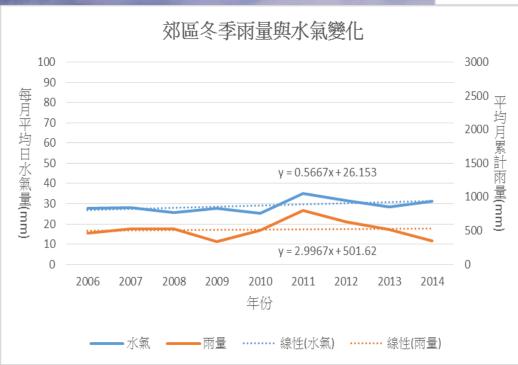
2006年至2014年臺北夏季平均溫度

2006年至2014年臺北冬季平均溫度

雨量與水氣分析

- 透過GPS的觀測資料反演的大氣可降水量資料與雨量資料,觀察熱島效應對於降雨量空間分布之差異
- 驗證若臺北的都市地區之降兩量增加,是 否造成郊區的兩量減少,並進一步分析水 氣量和雨量之關聯性

臺北都市地區、郊區夏季歷年雨量 及水氣變化統計



臺北都區 基 、 郊 下 下 多 季 下 不 等 及 、 統 計

總合分析

夏季	水氣(mm)	雨量(mm)	温度(°C)
都市	增加2%	減少2%	上升0.5
郊區	增加2%	增加4%	上升0.5

冬季	水氣(mm)	雨量(mm)	温度(°C)
都市	增加2%	增加5%	下降0.7
郊區	增加2%	增加1%	下降0.1

結論

熱島效應存在於大臺北地區,且郊區也逐漸發生熱島效應

• 人口自都市移動至郊區的過程,使郊區加速開發、都市化

熱島效應增加降雨的可能性

• 平均溫度上升,水氣增加進而影響降雨增加的可能性

郊區人口增加,都市化結果導致暴露於風險及危險的機率增加

人口密度增長,郊區加速開發,面臨暴雨所帶來的洪災時,居民暴露於風 險及危險的機率也跟著增加

建議

進行趨勢觀察研究中,資料的空間相關性及時間延續性影響到分析的成果好壞,建議以縣市 為單位,確保資料完整性

全球暖化導致降水集中於雨季,加上熱島效應 導致郊區雨量有明顯增加的趨勢,郊區的林地 良田建議**不應該繼續開發**

氣候變遷已成事實 我們無法忽視它的存在 惟有接受、精進氣象預報科技 並運用適當的調適策略 面對氣候變遷所帶來的影響 Thanks for your attention!